Field study on the effect of aluminum silicate adsorbent on performance of 51 weeks old broiler breeder chickens

G. A. Zohair, M. M. Amer, A. E. Hanafel

1Department of Animal Production, Faculty of Agriculture, Sana’a University, Yemen; 2Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Egypt and 3 El-Watania Poultry Company, Giza, Egypt

In 9 weeks field study, a total of 14100 (Ross broiler breeders) 51 weeks-old chickens fed on the same ration, placed in 2 houses (6600 female + 450 male / house). Birds of house 1 were treated with antitycotoxin adsorbent aluminum silicate (G-V-tox®) 5 kgm / ton, while those of house 2 were kept as non treated controls. Productivity and reproductivity parameters were calculated for comparison. Treated flock showed improved average egg production (Average 62.2%/week) compared with non treated (Average 61.7%/week), but all still lower than farm stander (Average 76.4%/week). Marked improvement was in the 1st 3 weeks (51-53) of treatment only. Total 9 weeks production declined was 5.5% and 8.4% in control and silicate treated flock; with weekly average of 0.61, and 0.93; respectively. Control flock was slower in decline of production (0.61%/week) than treated flock (0.93%/week). Average weekly egg production and hatching eggs/ hen in treated flock was lower than standard and higher than non treated. Hatchery parameters of treated were improved in treated at the first 3 weeks post treatment. The fertility was higher in aluminum silicate treated group (77.2%), than the untreated one (72.19%). The hatchability was in silicate treated (63.66%) versus (62.25%) in the untreated control. Culls % in hatche chick was 1.91% in treated flock and lower than in non treated (2.85%). Difference percentage between fertility and hatchability of G.V. tox treated chickens was (10.84%) higher than untreated control (16%). The number of marketable chickens 1100 was also improved in treated than non treated. In conclusion, our field study cleared that administration of Silicate in ration for treatment of broiler breeders resulted in an improved production and hatchery performance as compared with non medicated control. However; it did not restore it to the farm stander. Consequently the results indicated that we still in need for more effective products to be used to control mycotoxins in breeder chicken.

Mycotoxins are toxic and carcinogenic metabolites of fungi that occur in poultry feed under conditions of high temperature and high moisture (Bacon, et al., 1973). Aflatoxins are toxic metabolic product of A. flavus, A. parasiticus, and Penicillium puberulum, while Ochratoxin A (OA) is the most toxic product of Penicillium viridicatum and Aspergillus ochraceous (Dwivedi and Burns, 1986) causing disease conditions (Wyatt and Hamilton, 1975; Abdullah and Lee, 1981; Choudary and Rao, 1982; Jones et al., 1982; Hetzel et al., 1984; Dafalla, et al., 1987; Shoyinka et al., 1987; Anjum, 1994; Saif et al., 2003).

Nowadays, hundreds of mycotoxins are recognized (Uraguchi and Yamazaki, 1978). The synergistic interaction between OA and Aflatoxins was recorded (Huff et al., 1983,1992). Mycotoxins affects poultry production by lowering weight gain (Asplin and Carnaghan, 1961), feed efficiency, egg production (Prior and Sisodia, 1978; Bryden et al., 1980) and reproductivity performance, increased susceptibility to infectious disease (Wyatt and Hamilton, 1975; Bryden et al., 1980) immunosuppression (Pier, 1973; Burns and Dwivedi, 1986; El-Karim et al., 1991), vaccination failure (Anjum, 1994; Azzam and Gabal, 1997,1998; Bunaciu et al., 1998) interaction with mineral metabolism (Gardiner and Oldroyd, 1965), low hatchability due to embryonic death in broiler breeders (Cottier, et al., 1969; Choudhury et al., 1971; Niemiec et al., 1995) and impaired egg production (Krater et al., 1969 and Huff et al., 1975).

Many commercial products including mycotoxin-binding agents are used for detoxification contaminated feeds. Inorganic mineral adsorbents as silica containing products are more practical and economical feed additives to ameliorate the toxic effects of mycotoxins and ochratoxin A (Prior and Sisodia, 1978; Huff et al., 1992; Kubena et al., 1993; Harvey et al., 1993; Bailey et al., 1998).

* Corresponding author. Tel.: +20 012 1770699;
E-mail address: Profidramer@yahoo.com
(Mohammed M. Amer).
This study was carried out as a field trial to evaluate the preventive value of commercial products including Aluminum silicate as adsorbent (G.V- tox.) in Ross broiler breeders where reproductivity and hatchery parameters were determined during period of production to evaluate the total effect income of breeder flocks.

**Materials and methods**

**Chicken.** A total of 14100 Ross broiler breeders 51 weeks old chickens including 13200 females and 900 males housed in 2 closed houses; approximately 6600 females with 450 males in each house.

**Ration.** Mash, corn, Soya, 16% protein broiler breeder layer ration manufactured according to Ross breeders management guide and adjusted to fulfill the requirements of layer breeder according to (NRC, 1984).

**Detection of mycotoxins.** The used ration was analyzed for detection of mycotoxins according to (Soares and Rodriguez-Amaya, 1989) and found to contain Aflatoxins (4 ppb) and Ochratoxin (2.45 ppb). The aflatoxin content of ration were analyzed by using immunoaffinity columns (Vicam AflaTest® Affinity Column) and quantified by high performance liquid chromatography (HPLC) (Agillent 1100 Series).

**Diagnosis of mycotoxicosis.** In relation to low reproductively and detection of toxins in ration dead cases had lesions including hydropericardium and ascites. Liver was shrunken firm nodular or yellow fatty, ocher discoloration, hemorrhages in the capsular surface, distended gall bladder, white foci also seen in hepatic tissues. Kidneys were pale with increased urates and catarrhal enteritis (Saif et al., 2003).

**Detoxifying products.** The detoxifying commercial product G-V-tox® (aluminum silicate adsorbents) was used according to producer’s recommendations in ration of breeder chickens in rate of 5 kg / ton for 9 successive weeks.

**Performance.** The calculated parameters in this field study were compared with a control untreated house and farm stander for Ross breeder chickens for 9 weeks post medication between 51 and 59 weeks of age. Hen day production and hatching eggs were determined to evaluate the effect of used drug on productivity, while hatchery parameters including fertility and hatchability, difference between fertility and hatchability; culled chicks %, number of marketable chicks/1000 housed hens/day and weekly chicks / hen were calculated as average during the whole production period.

**Experimental design.** Both hens and cockerels were fed on the same ration. Breeder house 1 was fed with aluminum silicate in ratio of 5 kg/ton of ration, while house 2 was kept as control non treated. Obtained results are shown in (Table 1, 2, Fig. 1-4).

**Results and Discussion**

There are various approaches to control or combat mycotoxin problems. The simplest method based on the prevention or minimizes formation of mycotoxins in ration by good storage and prevention of grain damage during processing, shipping and handling (Dawson, 2001; Saif et al., 2003). Silica adsorbents as more practical and economical feed additives are added to poultry feeds to ameliorate the toxic effects of mycotoxins (Prior and Sisodia, 1978; Huff et al., 1992; Kubena et al., 1993; Harvey et al., 1993; Bailey et al., 1998).

Weekly egg production rates were declined gradually as a physiological state, but this production was lower as compared to Ross Farm standard. The condition was diagnosed as a result of mycotoxicosis. As decrease in egg production was reported as a sign of mycotoxicosis in breeder chickens (Choudhury et al., 1971; Prior and Sisodia, 1978; Page et al., 1980; Niemiec et al., 1995).

Administration of silicate adsorbent to breeder chicken flock for 9 weeks (from 51-59) resulted in increase in weekly egg production than control flock (Table1, Fig. 1). Treated flock showed improved average egg production (Average 62.2%/week) compared with non treated (Average 61.7%/week), but all still lower from farm standard (Average 76.4%/week). Marked increased egg production was seen in the 1st 3 weeks (51-53) of treatment only. Production declined in 9 weeks reached 5.5% and 8.4% in control and silicate treated with average weekly decline 0.61 and 0.93; respectively. Control flock was slower in decline than treated flocks. This result indicated that silicate was of value in amelioration of the toxic effects of mycotoxins and ochratoxin A (Prior and Sisodia, 1978; Huff et al., 1992; Kubena et al., 1993; Harvey et al., 1993; Bailey et al., 1998).

Average weekly cumulative egg production/
Table 1: Weekly average hen egg production, egg produced and hatching eggs/hen housed/week of treated flock compared with farm standerd and non treated control.

<table>
<thead>
<tr>
<th>Age / weeks</th>
<th>Weekly hen production E. St.*</th>
<th>Al. S.**</th>
<th>Control</th>
<th>F. St.</th>
<th>AL. S</th>
<th>Control</th>
<th>F. St.*</th>
<th>Al. S</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>80.0</td>
<td>66.5</td>
<td>63.5</td>
<td>5.00</td>
<td>4.13</td>
<td>4.00</td>
<td>4.75</td>
<td>3.95</td>
<td>3.90</td>
</tr>
<tr>
<td>52</td>
<td>79.0</td>
<td>64.9</td>
<td>63.2</td>
<td>4.90</td>
<td>4.00</td>
<td>4.00</td>
<td>4.64</td>
<td>3.90</td>
<td>3.90</td>
</tr>
<tr>
<td>53</td>
<td>78.0</td>
<td>64.0</td>
<td>63.4</td>
<td>4.90</td>
<td>4.00</td>
<td>3.90</td>
<td>4.66</td>
<td>3.90</td>
<td>3.75</td>
</tr>
<tr>
<td>54</td>
<td>77.0</td>
<td>63.5</td>
<td>63.6</td>
<td>4.80</td>
<td>4.10</td>
<td>3.85</td>
<td>4.50</td>
<td>3.80</td>
<td>3.70</td>
</tr>
<tr>
<td>55</td>
<td>76.0</td>
<td>62.5</td>
<td>63.7</td>
<td>4.70</td>
<td>4.00</td>
<td>3.70</td>
<td>4.40</td>
<td>3.90</td>
<td>3.60</td>
</tr>
<tr>
<td>56</td>
<td>75.0</td>
<td>61.2</td>
<td>61.7</td>
<td>4.70</td>
<td>4.00</td>
<td>3.70</td>
<td>4.40</td>
<td>3.90</td>
<td>3.55</td>
</tr>
<tr>
<td>57</td>
<td>75.0</td>
<td>60.1</td>
<td>59.0</td>
<td>4.60</td>
<td>3.80</td>
<td>3.75</td>
<td>4.40</td>
<td>3.80</td>
<td>3.45</td>
</tr>
<tr>
<td>58</td>
<td>74.0</td>
<td>59.2</td>
<td>59.1</td>
<td>4.60</td>
<td>3.70</td>
<td>3.68</td>
<td>4.30</td>
<td>3.50</td>
<td>3.30</td>
</tr>
<tr>
<td>59</td>
<td>74.0</td>
<td>58.1</td>
<td>58.0</td>
<td>4.60</td>
<td>3.70</td>
<td>3.70</td>
<td>4.30</td>
<td>3.60</td>
<td>3.30</td>
</tr>
<tr>
<td>Av./w #</td>
<td>76.4</td>
<td>62.2</td>
<td>61.7</td>
<td>4.76</td>
<td>3.94</td>
<td>3.81</td>
<td>4.48</td>
<td>3.81</td>
<td>3.61</td>
</tr>
<tr>
<td>Diff ##</td>
<td>6.0</td>
<td>8.4</td>
<td>5.5</td>
<td>0.40</td>
<td>0.43</td>
<td>0.30</td>
<td>0.45</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>Dic/w***</td>
<td>0.66</td>
<td>0.93</td>
<td>0.61</td>
<td>0.04</td>
<td>0.05</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>

* F. St.: Farm Stander ** Al. S.: Aluminum Silicate *** Dic/w: Average weekly decline.
# Av./w: average weekly production. ## Diff: production of week 51- production of week 59.

Table 2: Fertility, hatchability and difference in-between, culls, marketable chicks/1000 in treated and control breeder chickens.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fertility %</th>
<th>Hatchability %</th>
<th>Fert. – Hatch. Culls %</th>
<th>Marketable Ch./1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm stander</td>
<td>84.50</td>
<td>75.33</td>
<td>8.17</td>
<td>0.53</td>
</tr>
<tr>
<td>Al. S.</td>
<td>77.20</td>
<td>63.66</td>
<td>13.54</td>
<td>1.91</td>
</tr>
<tr>
<td>Control</td>
<td>78.25</td>
<td>62.25</td>
<td>16.00</td>
<td>2.85</td>
</tr>
</tbody>
</table>
hen housed in the treated flock was higher (3.94/hen) than non treated (3.81/hen) and both were lower than standard (4.76/hen). Treated flock show higher and stale average cumulative egg production (4.0 eggs / hen) from the 2nd week (week 52) to the weeks 56th week of age. In contrast non treated chickens showed gradual weekly decrease. Generally, the silicate treated birds were higher in egg production (Table 1, Fig 2).

Cumulative hatching egg/hen housed (Table 1, Fig. 3) of treated and non treated control were lower than the standard level. The treated group showed the higher average cumulative hatching egg (3.81 hatching egg/hen) than non treated (3.61 hatching egg/hen). The treated flock showed improved hatching egg/hen (3.95) in the 51st weeks and remains higher till the 59th. This result proved that the determined aflatoxin and Ocratoxin in ration had adverse effect on egg quality (Page, et al., 1980; Prior and Sisodia, 1978; Prior, et al., 1981; Niemiec et al.,1995).

Also, aflatoxins affect calcium and phosphorus metabolism by altering the metabolism of vitamin D3 and parathyroid hormone as reported by (Glahn et al., 1991). The periodical improvement in number of hatched eggs can be attributed to the limited effect of Silica in removal of the Ocratoxin A or synergism of Aflatoxin and Ocratoxin A (Huff et al., 1983, 1992).

Hatchery parameters in (Table 2) including fertility, hatchability and culled chicks of treated with control flock at the first 3 weeks post treatment as average rates; the higher fertility in silica treated flocks (77.2%) and the untreated control show 72.19% fertility. This result proved that the determined aflatoxin and Ocratoxin in ration had adverse effect on egg quality as described by (Ortalatlì et al., 2002) who detected microscopically abnormal spermatozoa and cessation spermatogenesis in seminiferous tubules in aflatoxin feed cocks.

The hatchability was 63.66% in treated; while it was 62.25% in untreated control. Percentages of culls in hatched chicks were the lower in non treated flock (1.91%) than in treated flocks (2.85%). Loss of hatchability was attributed to embryonic death in broiler breeders and leghorns induced by aflatoxin (Cottier et al., 1969; Howarth and Wyatt, 1976) and Ocratoxin A (Oloudhury et al., 1971; Prior and Sisodia, 1978; Tohala, 1983; Niemiec et al., 1995) that had teratogenic effect on chicken embryo (GHani et al., 1975).

Difference between fertility and hatchability of treatment chickens in treated (13.54) was higher than untreated control (16%).

Regarding the improved cull percentage in treated than non treated (1.91 and 2.85) and accordingly the number of marketable chicks/1000 hens (667.36 and 637.71) can be due to removal of the effect of aflatoxins on calcium and phosphorus metabolism as reported by (Glahn et al., 1991). Our field study pointed out that the administration of silicate as adsorbent in ration for control of mycotoxins in breeders resulted in slight improvement in reproductive performance in the 1st weeks after administration and over all average weekly egg and hatching egg production, also, hatchery performance data in treated birds was higher than non medicated control. Aluminum silicate was not able to treat flock to reach the farm standard.

Consequently our results indicated that Aluminum silicate was of value but we still in need of more effective products for mycotoxins in breeder chicken flocks especially those showing chronic affection.

References


دراسة حقلية عن تأثير سلالات الامنيوم كمجمع للسющим الفطري على إنتاجية أمهات دجاج التسمين عمر 5 أسابيع

في دراسة حقلية لمدة 4 أسابيع على 1400 من أمهات دجاج التسمين الروس عمر 51 أسبوع والمرية في عفرين (2001-2004)

- 50 ديك في كل غرفة (نظام ثلاثي) في نطاق علاج واحد، أضف سلالات الامنيوم كمجمع للس้มة الفطرية (جيفي توكس) بملعقة 5 كيلو جرام/طن للماء للتكاثر الأول واعبر الثاني كضافات غير معالجة، ثم حساب معدلات التسمين والكئلاء للمقارنة واستنتاج تأثير سلالات الامنيوم.

- أظهرت النتيجة المجمع زيادة في متوسط إنتاج البيض بمتوسط أساسي 17.2% من العلاج بالمقارنة بغير المعالج 11.7% إلا أنهما فلت دون التفتيش البصري للزمالة 31.4% في معالج كان معدل التسمين في إنتاج البيض وضاحا في الثلاث أسابيع الأولى من المعالجة.

- كان الإنخفاض في إنتاج البيض البصري 21.8% في المعالج وال4.5% في غير المعالج بينما المياصة 6.2% بمتوسط أساسي 0.93%. كان معدل الانخفاض في الدجاج غير المعالج أقل من المعالج. متوسط إنتاج البيض الامنيوم وكذا البيض الصالح لالتقنيح لكل دجاج في معالج أقل من المعالج وأقل من المياصة. تحسنت معدلات التفتيح في الدجاج معالجة سلالات الامنيوم حيث كان معدل التفتيح بالفسق 77% و 23.1% مع الفيروسي.

- اجريت الدراسة على إضافة سلالات الامنيوم إلى علف الأمهات أدى إلى تحسن في الانتاجية. تحسنت معدلات التفتيح إلا أنها لم تسجل تحصيل معنوي لفترة الفيروسي المزمنة خاصة في الأمهات.