Antimicrobial activity of some cephalosporins with special reference to their effects on body weight and immune response to Newcastle disease vaccine in fayoumy chicks

I. A. Radwan¹, Abeer M. Radi²*

¹Microbiology and ²Pharmacology Departments, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.

The susceptibility of the most common bacterial pathogens, namely E. coli, P. mirabilis and Ps. aeroginosa which were isolated from egg incubators and yolk sacs of randomly selected one day old Fayoumy chicks to three selected cephalosporins (cephradine, ceftiofur and cefquinome) were studied. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) of the tested drugs and the effect of these antibiotics on the body weight gain, mortality and immune response against Newcastle disease (ND) vaccine of the same breed of chicks were also estimated. The tested organisms were sensitive to ceftiofur and cefquinome whereas E.coli and Ps. aeroginosa were found to be resistant to cephradine. The results showed that mortalities were higher in control and cephadrine treated groups, while it was lower in the ceftiofur and cefquinome treated groups. On the other hand, the lowest mean body weight was recorded in control group (155.7±6.55 gm) followed by ceftiofur treated group (162.5±2.06 gm) and the highest mean body weight was recorded in cefquinome treated group (183.5±1.66 gm, p < 0.01) at 30 days of age. The study revealed that the tested antibiotics not exert any immune suppressive effect against (ND) vaccine.

Colibacillosis refers to localized or systematic infection caused entirely or partially by Escherichia coli (E.coli), including colisepticaemia, coligranuloma, air sac disease, cellulites, swollen head syndrome, peritonitis, salpingitis, osteomyelitis, synovitis, omphalitis and yolk sac infection (Barnes and lozano, 1994).

Proteus mirabilis (P. mirabilis) was isolated from dead-in-shell chicken embryos (Orajaka and Mohan, 1985). The organism can penetrate egg shell and survive within the egg (Al-Aboudi et al., 1988). On the other hand, Proteus mirabilis infection mainly causes mortality in young chicks up to 4 weeks of age with suppurative osteomyelitis (Venkanagouda et al., 1996).

Pseudomonas organism can cause localized or systemic diseases in young and growing poultry, invade fertile eggs causing death of embryos and newly hatched chicks. Pseudomonas aeroginosa (P. aeroginosa) can be highly virulent causing 100 % mortality in experimentally inoculated chickens Lin et al., (1993), and from 0 to 90% in broiler chicks (Walker et al., 2002).

Cephadrine is 1st generation cephalosporin that can be administered orally and used successfully in treating infection of the respiratory tract and soft tissue. The gram-negative aerobic enteric bacilli (E.Coli, P. mirabilis, Salmonella spp., and Shigella spp.) were reported to be highly susceptible to the first generation cephalosporin, (Quintilani et al., 1982).

Ceftiofur is a broad spectrum 3rd generation cephalosporin approved for veterinary use to treat a variety of Gram-negative, Gram–positive bacterial pathogens and anaerobic pathogens including Pasteurella spp., Streptococcus spp., Staphylococcus spp., salmonella spp. and Escherichia coli (Brown et al., 1991; Salmon et al., 1996; Tragesser et al., 2006). Cefquinome was recommended for the control of P.multocida infection in balady chickens and for control of terminal bacterial infection in one day old broiler chickens (El-Naeeney and lotfy, 2000).

Cefquinome is the 4th generation cephalosporin developed for use in veterinary medicine. It had in vitro and in vivo efficacy against a wide range of gram-negative and gram-positive bacterial pathogens, (Limbert et al., 1991; Rohdich et al., 2009).

The present study was carried out to determine the susceptibility of E.coli, P. mirabilis and Ps. aeroginosa isolated from egg incubators and yolk sac of randomly selected day

* Corresponding author. Tel.: +20 082 2322066; Fax: +20 082 2327982; E-mail address: a.radi@bsu.edu.eg

(Abeer M. Radi)
old Fayoumy chicks to three selected cephalosporins (cephradine, ceftiofur and cefquinome).

Determine the effect of these antibiotics on chicks' performance.

Studied the effect of the selected antibiotics on chicks' immune response to (ND) vaccine.

Materials and methods

Drugs.

Cephradine (velocef)®. It was supplied as pure powder for injection from Bristol-Myers Squibb Company, Cairo, Egypt.

Ceftiofur sodium (Excenel)®. It was supplied as sterile powder (1 gram vial) for injection from Pharmacia & upjohn Company, Cairo, Egypt.

Cefquinome sulphate (CobraKan)®. It was obtained as suspension 2.5% for injection from Intervet International Company Cairo, Egypt.

Samples. A total of 10 samples in the form of cracked shells, dust and fluffs were collected from hatcheries, as well as eighty day old Fayoumy chicks were randomly selected for isolation of bacterial pathogens from their yolk sacs. Forty day old chicks were randomly selected for collection of blood samples for application of Heamagglutination Inhibition test for (ND) maternal antibodies.

Media for bacterial isolation and identification. Bacterial fluid and solid media were used for isolation of different bacterial pathogens, as each swab was inoculated into tetratrionate broth, tryptone soya broth and MacConkey broth. All fluid media were incubated at 37 °C for 18 hours. A loopfull from each fluid medium was seeded onto the surface of the following solid plating media: salmonella-shigella agar, Tryptone soya agar and MacConkey-bile salt-lactose agar media, followed by aerobic incubation at 37 °C for up to 72 hours. The obtained colonies were identified morphologically and smears were taken stained with Gram's staining technique and identified biochemically according to Collee et al., (1996).

Experimental chicks and grouping. A total number of 1400 one day-old Fayoumy chicks were divided into 4 equal groups; each of 350 chicks. All chicks were floor reared in El-Azab project for poultry production at Fayoumy Governorate. Feeding and lighting programmes were applied according to the catalogue of the project.

In vitro antimicrobial sensetivity test. The bacterial isolates from the egg incubators and egg yolk were examined for sensitivity against three cephalosporines (cephradine, ceftiofur and cefquinome).

Cephradine, ceftiofur and cefquinome sensitivities were determined using the disc and agar diffusion method as described by Collee et al., (1996) as follow, A portion of a single bacterial colony was selected and inoculated into 4 ml Muller Hinton broth and incubated at 37 °C for 18 hours. After incubation the concentration of the M.O was equal to 1×10⁸ cfu/ml. The culture was flooded onto the surface of well-dried Muller Hinton agar plates. The plates were tipped and excess of fluid was removed with a pipette after being sure that entire surface was covered with inoculum. The bacterial culture was allowed to settle for 15 minutes at 37 °C. The antimicrobial discs of cephradine and ceftiofur (30 ug/disc) and cefquinome (30 ug/well) were aseptically overlaided. The plates were allowed to stand 30 minutes at room temperature, after application of the discs. Then after overnight incubation at 37 °C, the plates were examined for inhibition zones. The interpretation of the results were carried out according to Collee et al., (1996).

Minimum inhibitory and bactericidal concentrations ([MIC] and [MBC]). According to Collee et al., (1996) the drugs were dissolved in sterile distilled water to obtain a concentrations of 10 mg ml⁻¹, 1 mg ml⁻¹, 0.1 mg ml⁻¹ as stock solutions.

From the 10 mg ml⁻¹ solution 256 ul, 128 ul, 64 ul, 32 ul were taken and added to tubes containing 20 ml Muller Hinton broth to obtain the following dilutions of antibiotics (128, 64, 32 and 16 µg ml⁻¹, respectively.

From the 1 mg ml⁻¹ solution 160 ul, 80 ul and 40 ul were taken and added to tubes of Muller Hinton broth to obtain the following dilutions of (8, 4, 2 µg ml⁻¹).

From the 0.1 mg ml⁻¹ tube 200 ul, 100 ul, 50 ul and 25 ul were added to Muller Hinton broth tubes to obtain dilutions of (1, 0.5, 0.25 and 0.125 µg ml⁻¹).

Each tube was inoculated with 100 ul of 1×10⁶ cfu/ml (prepared by using MecFarland opacity tube) suspension of each of the microorganisms isolated from the egg incubators and chicks.

All tubes were incubated at 37 °C for 24 hours.

At the end of incubation period the tubes were examined visually for turbidity.
The tubes which have no visible growth indicate the MIC points.

To determine the MBC, a loopfull from the tubes which showing no visible growth were subcultured onto Muller Hinton agar and incubated at 37 °C for 24-48 hours. After incubation of the subculture plates they were examined for growth. The tube containing the lowest concentration of antibiotic that fails to yeiled growth on the subculture plate was regarded as containing MBC of antibiotic for the tested strain.

Vaccination programme. Chicks groups were received the following viral vaccines.

At 1 day old. Marek's virus vaccine s/c in the neck 0.2 ml/chick.

At 2 day old. Infectious bronchitis living attenuated vaccine in drinking water.

At 6 days of age. ND (Hitchner B1) living attenuated vaccine in drinking water.

At 9 days of age. Infectious bursal disease vaccine in drinking water which repeated at 19 days of age.

At 18 days of age. ND (Lasota) vaccine in drinking water which was repeated at 28 days of age.

Experiment NO 1 (The effect of subcutaneous injection of the tested drugs on the chicks performance). In this experiment the effect of subcutaneous injection of three doses (at one, 16 and 26 days of age) of cephadrine, cefotiofur and ceftiofur and ceftiofur were studied on the performance (general health condition, body weight, feed intake, food conversion rate and mortality rate) of 1400 one day old chicks about 27 gm body weight. The chicks were divided into 4 groups each of 350 chicks. The 1st group was injected with cephadrine at dose of 50 mg kg⁻¹ b.wt (Oishi et al., 1976), the 2nd group injected cefotiofur (10 mg/kg b.wt.), Aziza et al., (1998), whereas the 3rd group injected cefquinone (2 mg kg⁻¹ b.wt.) Block (1996) and the 4th group was was kept as a non treatred control. The chicks of each group was weighed at 1, 7, 14, 21, 30 days of age.

Relative growth rate and feed conversion ratio were calculated according to Crampton and Lloyd (1959) as the following:

Relative growth rate = \(\frac{(w2-w1)}{(w1+w2)/2} \times 100 \)

Where:

\(w1 \) = body weight at the beginning of the period.

\(w2 \) = body weight at the end of the period.

The feed conversion rate was measured by dividing the amount of food consumed, in a certain period, by the gain in weight at the same period, expressed in the same weight units.

Experiment NO 2 (The effect of the tested drugs on chicks immune response against ND vaccine). Serum samples were collected at the first day by scarifying 40 chicks, then at the 10th, 19th and 29th day of age by scarifying 15 chicks from each group and collection of their blood for serum. Collected sera were subjected to for heamagglutination inhibition test (HI) by the conventional microtitre method according to Calnek (1979).

Statistical analysis. The mean and standard deviations were calculated as described by Snedecor (1969), the F- test was carried out by using INSTAT program.

Results and Discussion

Bacterial isolates from examined hatchery samples, 6 samples were found to harbour bacterial pathogens from 10 samples, (2 Ecoli, 3 ps. aeroginosa and 1 p. mirabilis isolate) and 22 bacterial pathogens were isolated from the yolk sac of day old chicks, and identified as (9 isolates Ecoli, 8 isolates ps. aeroginosa, 3 isolates p. mirabilis and 2 isolates were spore forming aerobic gram- positive bacilli).

These findings nearly coincide with the results obtained by Choudhury et al., (1993) who isolated E.coli from 57 (67.04 %) of infected yolk sacs on 58 farms. Barnes and Lozano (1994) revealed that egg transmission of pathogenic E.coli is common and can be responsible for high chick mortality. Radwan and Hassan (2004) experimentally induced 68 % embryonic death using p.mirabilis through egg shell.

E. coli and ps. aeroginosa were found to be resistant and p. mirabilis was found to be sensitive to cephadrine. These finding resemble those obtained by Lacey et al., (1983); Gakuya et al., (2001).

The tested organisms was sensitive to Cefiotiofur, this is similar to the result obtained by (El–Naenae and lofty 2002) who recorded that in chicks 39 out of 40 tested strains of E.coli were sensitive to cefiotiofur, for Ps. aeruginosa the activity percentage of 80 % was recorded to cefiotiofur as 4 strains were sensitive from the tested 5 isolates, all tested isolates of proteus species from chicks were completely sensitive. Huang et al., (2009) reported that E.coli, salmonella and p. multocida isolates form poultry were sensitive to ceftiofur. On the other hand our study not agrees with the result obtained by (Deshpande et al., 2000) who found
that the isolates of *E. coli* which produce extended spectrum β-lactamase (ESBL) were resistant to ceftriaxone. This may be due to the acquired resistance of *E. coli*. Also (Walker *et al.*, 2002) recorded that antibiotic sensitivity tests showed that *P. aeruginosa* isolates obtained from hatcheries and broiler chicks were resistant to ceftiofur.

The result of our investigations proved that *E. coli*, *P. mirabilis* and *P. aeruginosa* were sensitive to ceftiofur. This finding agreed with that reported by Sheldon *et al.*, (2004) and Rohdich *et al.*, (2009).

MIC and MBC of cephradine for the tested *E. coli*, *P. mirabilis* and *P. aeruginosa* were 32, 128 and >128 µg ml⁻¹ and 64, 128, >128 µg ml⁻¹, respectively (Table 1). The MIC and MBC of ceftiofur for *E. coli*, *P. mirabilis* and *P. aeruginosa* investigated in this study were 0.5, 16, >128 µg ml⁻¹ and 0.5, 16 and >128 µg ml⁻¹ respectively. These results similar to that reported by (Deshpande *et al.*, 2000), the MIC of ceftiofur and ceftiofur for *E. coli* were (0.05-2 and ≤ (0.03 -1 µg ml⁻¹), respectively but resistant strains of *E. coli* exert MIC > 32 µg ml⁻¹ for both drugs. Meyer *et al.*, (2008) recorded that the MIC for *E. coli* in foals was ≤ (0.5-1 µg/ml).

This study revealed that MBCs for ceftiofur is similar to its MICs against most tested strains strongly suggest that ceftiofur exerts bactericidal effect. This result confirmed the findings of Franklin (1992) and Klein *et al.*, (1996); they reported that ceftiofur sodium exerts bactericidal effect on tested isolates at concentration equal to or at most one doubling dilution above MIC.

The MIC and MBC of ceftiofur for the tested bacteria *E. coli*, *P. mirabilis* and *Ps. aeruginosa* investigated in this study were 0.5, 1, 16 µg ml⁻¹ and 1, 16 and >128 µg ml⁻¹, respectively. This finding similar to that obtained by Limbert *et al.*, (1991) who recorded that the MIC for *E. Coli* (<0.006-0.781 µg ml⁻¹), *P. mirabilis* (0.024-0.39 µg ml⁻¹), *ps. aeruginosa* (0.391-50 µg ml⁻¹). Also the MIC for *E Coli* and *P. mirabilis* was less than or equal to 0.5 µg ml⁻¹, while MIC for *ps. aeruginosa* 8 µg ml⁻¹ and MBC for most species except Enterobacter were within a dilution of MIC, Chin *et al.*, (1992); Murphy *et al.*, (1994). Ceftiofur had MIC value for *E. coli* <0.06 µg/ml in cattle by Sheldon *et al.*, (2004) and Thomas *et al.*, (2006).

Performance of different groups of chicks under study. As shown in Tables (2 and 3), mortalities were higher in control (53 chicks) and cephradine treated group (33) and lower in the other two groups (21 and 20) in ceftiofur and ceftiofur treated groups, respectively. Regarding total feed intake, the control non-treated group showed the highest quantity of feed intake (632.78 gm/chick in 30 days) followed by ceftiofur treated group (593.21 gm/chick). On the other hand, the lowest mean body weight was recorded in control group (155.7 gm ± 6.55) followed by ceftiofur treated group (162.5gm±2.06) and the highest mean body weight was recorded in ceftiofur treated group (183.5 gm ± 1.66), (p< 0.01) in 30 days. Mean weight gain was highest in ceftiofur treated group (156.5) and lowest in control group (128.7). The excellent feed conversion rate was obtained in the third ceftiofur treated group (3.79) followed by ceftiofur treated group (4.09) mean while it was (4.18) and (4.92) in cephradine and control groups, respectively. Relative growth rate was highest (148.69) in ceftiofur treated group and lowest (140.88) in control treated group (Table 3).

Egg-born diseases are transmitted from the infected dam to newly hatched offspring by means of fertile eggs. Some disease agents are carried inside the shell as a result of shedding into the egg piro or the addition of shell membrane. Others are carried out on the shell or penetrate from the shell surface through pores after the egg is laied (Radwan and Hassan, 2004). The ability of ceftiofur and ceftiofur to reduce mortality rate were detected in this study and the efficacy of both drug were also evident by improved mean body weight gain, feed intake and feed conversion. This previous data is supported by Alexander, (1985) who reported that after the lapse of the acute phase of the infection the drugs improve weight gain in consequence of an increased feed intake and increased absorption of nutrients.

The used chicks had ND maternal antibodies titers of log 6. Serum samples were collected from all groups at 10, 19 and 29 days of age and the mean antibody titer of each group was showed in Table (4).

It was clear that ceftiofur treated group recorded non significant decrease antibody titer against ND vaccine, mean while ceftiofur treated group recorded non significant increase antibody titer.

Conclusion. From the previous study we could concluded that:

Cephradine could be used for treatment of potential infections with *Proteus mirabilis*.

239
Table (1): Minimum inhibitory and bactericidal concentrations (MIC) and (MBC) of the tested drugs.

<table>
<thead>
<tr>
<th>Tested M.Os</th>
<th>Cephradine (µg ml⁻¹)</th>
<th>Cefuroxime (µg ml⁻¹)</th>
<th>Cefquinome (µg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (1 isolates)</td>
<td>32</td>
<td>64</td>
<td>0.5</td>
</tr>
<tr>
<td>P. mirabilis (1 isolates)</td>
<td>128</td>
<td>128</td>
<td>16</td>
</tr>
<tr>
<td>Ps. aeruginosa (1 isolates)</td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
</tr>
</tbody>
</table>

Table (2): Effect of cefradine, cefuroxime and cefquinome on mortalities and performance in chicks.

<table>
<thead>
<tr>
<th>Group (350 chicks/group)</th>
<th>Mortality per number (350 chicks)</th>
<th>Feed intake (gm) per chick</th>
<th>Mean body weight (gm) per chick</th>
<th>Mean weight gain (gm) per week</th>
<th>Feed conversion rate (week)</th>
<th>Relative growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 days of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st group (Cephradine)</td>
<td>8 chicks</td>
<td>87.7</td>
<td>57.3±0.47</td>
<td>30.25</td>
<td>2.89</td>
<td>71.8</td>
</tr>
<tr>
<td>2nd group (Ceftiofur)</td>
<td>9</td>
<td>87.98</td>
<td>54.75±1.49</td>
<td>27</td>
<td>3.25</td>
<td>65.06</td>
</tr>
<tr>
<td>3rd group (Cefquinome)</td>
<td>6</td>
<td>86.48</td>
<td>58.5±1.5</td>
<td>31.5</td>
<td>2.74</td>
<td>73.68</td>
</tr>
<tr>
<td>4th group (Control group)</td>
<td>27</td>
<td>91.33</td>
<td>57.5±0.645</td>
<td>30.3</td>
<td>3.014</td>
<td>71.7</td>
</tr>
<tr>
<td>14 days of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st group (Cephradine)</td>
<td>13</td>
<td>149.5</td>
<td>94±2.81</td>
<td>36.8</td>
<td>4.06</td>
<td>48.6</td>
</tr>
<tr>
<td>2nd group (Ceftiofur)</td>
<td>6</td>
<td>158.9</td>
<td>92.4±1.43</td>
<td>34.6</td>
<td>4.4</td>
<td>49.06</td>
</tr>
<tr>
<td>3rd group (Cefquinome)</td>
<td>10</td>
<td>156.86</td>
<td>100.6±1.79</td>
<td>42.1</td>
<td>3.72</td>
<td>52.9</td>
</tr>
<tr>
<td>4th group (Control group)</td>
<td>13</td>
<td>148.4</td>
<td>92.75±0.36</td>
<td>35.25</td>
<td>4.2</td>
<td>46.93</td>
</tr>
<tr>
<td>21 days of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st group (Cephradine)</td>
<td>2</td>
<td>179.1</td>
<td>130.4±1.46*</td>
<td>36.2</td>
<td>4.95</td>
<td>32.3</td>
</tr>
<tr>
<td>2nd group (Ceftiofur)</td>
<td>1</td>
<td>160.4</td>
<td>132.1±2.27**</td>
<td>39.7</td>
<td>4.04</td>
<td>35.3</td>
</tr>
<tr>
<td>3rd group (Cefquinome)</td>
<td>2</td>
<td>166.1</td>
<td>135.2±0.71***</td>
<td>42.1</td>
<td>3.94</td>
<td>34.6</td>
</tr>
<tr>
<td>4th group (Control group)</td>
<td>3</td>
<td>206.7</td>
<td>123.6±1.03</td>
<td>31.6</td>
<td>6.54</td>
<td>24.73</td>
</tr>
<tr>
<td>30 days of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st group (Cephradine)</td>
<td>10</td>
<td>152.06</td>
<td>163±3.93</td>
<td>32.6</td>
<td>4.66</td>
<td>22.3</td>
</tr>
<tr>
<td>2nd group (Ceftiofur)</td>
<td>5</td>
<td>146.96</td>
<td>162.5±2.06</td>
<td>30.4</td>
<td>4.83</td>
<td>20.6</td>
</tr>
<tr>
<td>3rd group (Cefquinome)</td>
<td>2</td>
<td>183.77</td>
<td>183.5±1.66**</td>
<td>40.8</td>
<td>4.51</td>
<td>25</td>
</tr>
<tr>
<td>4th group (Control group)</td>
<td>10</td>
<td>186.35</td>
<td>155.7±6.55</td>
<td>32.1</td>
<td>5.8</td>
<td>22.1</td>
</tr>
</tbody>
</table>

* P < 0.05 ** P < 0.01 *** P < 0.001

Table (3): Comparison between different groups of chicks demonstrating important items of performance.

<table>
<thead>
<tr>
<th>Group</th>
<th>1st group (Cephradine)</th>
<th>2nd group (Ceftiofur)</th>
<th>3rd group (Cefquinome)</th>
<th>4th group (control non treated group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mortalities</td>
<td>33</td>
<td>21</td>
<td>20</td>
<td>53</td>
</tr>
<tr>
<td>Total average Feed intake (gm)/chick in 30 days</td>
<td>568.36</td>
<td>554.24</td>
<td>593.21</td>
<td>632.78</td>
</tr>
<tr>
<td>Mean body weight (gm) at 30 days of age</td>
<td>163±3.93</td>
<td>162.5±2.06</td>
<td>183.5±1.66**</td>
<td>155.7±6.55</td>
</tr>
<tr>
<td>Mean body gain in 30 days</td>
<td>136</td>
<td>135.5</td>
<td>156.5</td>
<td>128.7</td>
</tr>
<tr>
<td>Food conversion rate at 30 days of age</td>
<td>4.18</td>
<td>4.09</td>
<td>3.79</td>
<td>4.92</td>
</tr>
<tr>
<td>Relative growth rate at 30 days of age</td>
<td>143.16</td>
<td>143</td>
<td>148.69</td>
<td>128.7</td>
</tr>
</tbody>
</table>

** P <0.01
Cefquinome and ceftriaxone could be used for treatment of potential infections with *Escherichia coli*, *Proteus mirabilis* and *Pseudomonas aeruginosa* microorganisms.

Mortalities were lower in chicks treated by ceftriaxone and cefquinome while the highest mean body weight was recorded in cefquinome treated chicks.

Ceftriaxone, ceftriaxone and cefquinome did not exert any immunosuppressive effect against Newcastle disease vaccine thus they could be used safely before vaccination without adverse effect on the immune response of chickens.

References

Fig. (1): Mean body weight in the different chicks groups.

Table (4): Effect of ceftriaxone, ceftriaxone and cefquinome on ND Mean HI log, of antibody titers.

<table>
<thead>
<tr>
<th>Age per days</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftriaxone group</td>
</tr>
<tr>
<td>One day age</td>
<td>6</td>
</tr>
<tr>
<td>At 10 days of age</td>
<td>11</td>
</tr>
<tr>
<td>At 19 days of age</td>
<td>9.57±0.68</td>
</tr>
<tr>
<td>At 29 days of age</td>
<td>8.33±0.45</td>
</tr>
</tbody>
</table>

Non significant variation (p > 0.05).

Block, C. Von (1996): Pharmacokinetics of the cephalosporin antibiotic cefquinome in sows at different stages of the reproductive cycle. Inaugural-Dissertation, Tierarztliche Fakultät, Ludwig-Maximilian Universität, Munchen, Germany.

Deshpande, L.; Pfaller, M. A. and Jones, R.N. (2000): In vitro activity of ceftriaxone tested against clinical isolates of Escherichia coli and Klebsiella pneumoniae including...

النشاط المباشر للبيكريبا لبعض مركبات السيفالاسورين مع الإشارة الخاصة لتاثيرها على ونوعة الكاتاكت

الفيomiو المحصنة ضد مرض البيكرا

استهدفت هذه الدراسة مراضاً حاسية ميكوبيا البروتين مراعيس والقولون الأشريكي والزائفة الزائفة المعروفة من الحساسات وكركتوبيكريبا بور على يوم ثلاثة من المضادات الحيوية من مجموعة السيفالاسورين وهيسيفالين وستيفيكينوم وتم حساب تركيزاتها المثلى وحالة هذه الكاتارتيا وتم أيضاً دراسة تأثير هذه المضادات الحيوية على معدل نمو ونوعت الكاتارتيا ودراسة تأثير هذه المضادات الحيوية على الجهاز المناعي للكاتارتيا المحصنة بالبيكرا. ونتيجة لائية فالمهمة أن هذه الميكروبات كانت حساسة للسيفالاسورين ولكن للسيفالاسورين وعلى الزائفة الزائفة أكثر مقاومة للفاكارين. وجد أن أقل معدل نمو كان في الكاتارتيا التي ابتعد مضادات حيوية (7.5-0.5) مجمول (1.5 + 0.5) مجمول (2010) وبشكل عام نمو على المجموعة المحصنة بالسيفالاسورين (5.3 + 0.4) مجمول (2010) عند عمر 30 يوم. وجد أن نسباً نسبياً نقص كانت في المجموعة التي ابتعد مضادات حيوية (7.5 + 0.5) مجمول (2010) وتم المجموعة المحصنة بالسيفالاسورين. ومن هذه الدراسة تبين أن هذه المضادات الحيوية ليس لها تأثير مثبط للجهاز المناعي في الكاتارتيا المحصنة ضد مرض البيكرا.