EFFECT OF SOME PLANT OILS ON REPRODUCTIVE ACTIVITIES IN FEMALE ALBINO RATS

Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 12452, Egypt.

ABSTRACT

The present study aimed to determine the effect of adding plant oils; extra virgin olive oil (EVOO), sunflower and soybean to animal feed on serum estradiol (E₂) and progesterone (P₄) levels, histological structure of ovaries and in vitro maturation of oocytes (IVM). A total of 60 mature female Albino rats were used. Animals were divided equally into 5 groups; control group (received standard diet), group II (received EVOO), group III (received sunflower oil), group IV (received soybean oil) and group VI (received oil mixture which consist of sunflower and soybean oils). After 6 weeks of feeding oil added diet, blood samples were collected from all rats throughout the different stages of estrous cycle. Sera were used for determination of serum E₂ and P₄ levels. Only females that were not in estrus were scarified after the last blood sample collection, ovaries were harvested for histopathological examination and for in vitro maturation.

Results showed that none of oils led to ovarian changes except soybean oil and oil mixture, cause congestion of some ovarian blood vessels. It was also noted that the hormonal pattern didn’t differ significantly among different treatments within the same stage of the cycle, except for the group received oil mixture where E₂ and P₄ levels decreased significantly (P < 0.05) during metestrus and diestrus phases, respectively. In the treated groups, the highest significant (P < 0.05) oocyte recovery rate (RR) (5.43 ± 0.23% and 4.41 ± 0.13%) and maturation rate (MR) (79.17 ± 2.03% and 73.43 ± 1.97%) were attained after application of EVOO followed by sunflower oil, respectively. While the lowest values were calculated with the soybean oil and oil mixture (3.83 ± 0.13 % and 2.50 ± 0.16 %) and (68.18 ± 2.29 % and 62.50 ± 2.23 %), respectively. It could be concluded that EVOO as well as sunflower oil have a beneficial influence on ovarian functional performance, retrieval of high number of good quality oocytes and raise oocyte maturation.

*Corresponding author. Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, 62512 Beni-Suef, Egypt. Email: dr.eid53744@hotmail.com
INTRODUCTION

During the last few decades, scientists have paid their attention to health effects concomitant with adding some types of natural oils such as olive oil, sunflower oil and soybean oil to animal feed (Mckevith, 2005). The value of oil is related mainly to its fatty acid composition (Dyer et al., 2008). Extra virgin olive oil (EVOO) was found to control lipoprotein profile, blood pressure, antithrombotic activity and glucose metabolism (Perez-Jimenez et al., 2005) as well as it protects against colon and breast cancers (Psaltopoulou et al., 2004). In addition, it protects blood lipids against oxidative damage and reduces coronary heart diseases due to its high oleic acid content and other bioactive components; such as polyphenols, vitamin E and hydrocarbons, that have anti-oxidative, anti-ischemic (Visioli et al., 2002) and anti-inflammatory properties (Martin-Pelaez et al., 2013). Concerning sunflower oil, reports showed that it possesses skin-health benefits (Pal, 2011), anti-inflammatory effect and improves lipid profile (Masi et al., 2012) as well as protects against cardiovascular diseases (Binkoski et al., 2005). In this respect, it contains high levels of vitamin E (Idson b, 1993), which has a prominent antioxidant activity and hypocholesterolemic effect, beside other oil components such as linolenic fatty acids and linoleic (LA) (Booyens et al., 1988). Moreover, soybean oil is an important source of vitamin E that helps to lower serum cholesterol and low density lipoprotein "LDL" levels and prevents atherosclerosis (Gresshoff, 2013). Additionally, it was shown that soybean oil has the power to minimize oxidative stress by elevation of natural enzymatic antioxidants as superoxide dismutase, glutathione peroxidase and catalase (Papazzo et al., 2011). Also, it regulates adipokines and proteins involved in adipose tissue metabolism and inflammation (Chuffa et al., 2015). Moreover, it was recorded that low amount of soybean oil, rich in both linolenic and LA, ameliorates the diabetic phenotype, protects pancreas from oxidative damage and restores Δ6 desaturase levels which is the key enzyme in the metabolism of essential fatty acids. Soy oil contains isoflavones which help in preventing osteoporosis and menopausal symptoms as well as reducing the risk of uterine cancers by blocking the estrogen receptors activation (Song et al., 2007). There is a lack of evidence about the influence of these oils on reproduction in this context. Reed et al. (1987) showed that olive oil increases E2 and P4 levels before mating and at the end of lactation period and increases prolactin hormone levels that plays a role in fertility and allows fertilized eggs to develop and mature. Moreover, Salem (2015) recorded that EVOO improves the health status during pregnancy and lactation periods, reduces the risk of female infertility and increases the number and quality of foeti. Vishnu et al. (2017) stated that EVOO affects follicular development through hormones acting on the ovarian level such as E2 and P4. Regarding sunflower oil Balevi et al. (2003) and Midilli et al. (2009) recorded that administration of this oil in the diet improves reproductive performance through improving fatty acid composition of yolk, which in turn improve embryonic development, fertility, hatchability and increase feed conversion rate of quail. Safdar et al. (2017) mentioned that sunflower oil has a role in synthesis and secretion of prostaglandin E2 (PGE2) which is considered a critical mediator of oocyte maturation and it is important for maintenance of pregnancy in ewes during flushing period. Concerning soybean oil, it was recorded that consumption of soybean products in female rodents causes alterations in ovarian development, timing of vaginal opening, estrous cyclicity, ovarian function, HPG axis and increased incidence of uterine adenocarcinoma as well as subfertility (Chen et al., 2007; Delclos et al., 2009 and Serag El Din et al., 2011). These bad effects could be attributed to their content of isoflavones and it contain high levels of linolenic acid (omega-3) that alters oocyte recovery rate, decreases the number of obtained oocytes and decreases the maturation rate through decreasing the number of oocytes reaching MII with a reduction in cumulus expansion (Wakefield et al., 2008; Marei et al., 2010 and Serag El Din et al., 2011). Moreover, mice fed a high omega-3 diet for 4 weeks caused alteration in fatty acid content in the ovary and this was associated with altered oocyte mitochondrial distribution, increased reactive oxygen species (ROS) levels, poorer embryo morphology and development into blastocyst following fertilization (Wakefield et al. 2008). Data concerning the influence of the aforementioned oils on in vitro embryo production (IVEP) seems to be scanty. Therefore, the current study aimed to determine the influence of adding different oils to diet on gonadal steroid hormones, quantity and quality of recovered oocytes and their in vitro maturation in female rats.
MATERIAL and METHODS

A) Animals:
The present study was implemented in the Animal Experimental Unit Department of Physiology, Faculty of Veterinary Medicine, Beni-Suef University, during December 2017 till the end of February 2018. Sixty mature clinically healthy, cycling female Albino rats (150 – 180 g BWT) were used. Rats were left for 2 weeks for acclimatization. Rats were housed in cages in a room at 25 °C with controlled humidity on a 12 h light: 12 h dark cycle and kept under hygienic conditions and offered balanced diet and water ad libitum.

B) Chemical analysis of plant oils used in the current study:
Acidity % and peroxide value for all oils (Table 1) were measured according to AOAC (2005). Fatty acid composition of oil mixture (Table 1) was measured according to ISO 12966-2 (2011). All measurements were done in Food Technology Research Institute, Agriculture Research Center, Egypt. Data for fatty acid composition of EVOO was recorded as stated by IOOC (2003), while that of sunflower and soybean was recorded as stated by Orthoefer (1996) (Table 1).

C) Preparation of the oil added diet:
Each type of oil was mixed thoroughly at a rate of 10 % of the ration. To minimize oxidation, all diets were prepared once weekly and stored at 4ºC in the refrigerator (Ruiz-Gutie´rrez et al., 1999).

D) Experimental design:
Rats were equally divided into 5 groups (12 rats/group); control group (received standard diet), group I (received EVOO), group II (received sunflower oil), group III (received soybean oil) and group IV (received mixture of sunflower and soybean oil). After 6 weeks of feeding oil added diet, blood samples were collected from all rats throughout the different stages of estrous cycle. At least, five estrous cycles from each rat were included.

Blood sample was collected from the orbital venous plexus of the rat between the hours of 06:30 and 09:30 before access to food and water under mild ether anesthesia (Biegel et al., 1998). Sera were separated and kept at -20ºC till hormonal assay. Only the females that were not in estrus were scarified after the last blood sample collection, ovaries were harvested; 20 ovaries were used for in vitro maturation and the remaining for histopathological examination.

All procedures were performed in strict accordance with the recommendations and ethical guidelines for the care of animals used for experimental and other scientific purposes according to the Institutional Animal Care and Use Committee of Beni-Suef University, Beni-Suef, Egypt. The obtained data were subjected to statistical analysis using ANOVA as described by Snedecor and Cochran (1987) and SAS Program (1994).

Table 1: Chemical analysis of plant oils:

<table>
<thead>
<tr>
<th>Item</th>
<th>EVOO</th>
<th>Sunflower</th>
<th>Soybean</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidity% (as oleic acid)</td>
<td>0.76</td>
<td>0.07</td>
<td>0.131</td>
<td>0.135</td>
</tr>
<tr>
<td>Peroxide value (Meq.O2/Kg oil)</td>
<td>9.85</td>
<td>5.99</td>
<td>1.39</td>
<td>5.39</td>
</tr>
<tr>
<td>Myristic acid(C14:0)</td>
<td>≤ 0.05</td>
<td>0.2</td>
<td>0.1</td>
<td>0.08</td>
</tr>
<tr>
<td>Palmitic acid(C16:0)</td>
<td>7.5-20</td>
<td>6.8</td>
<td>11.0</td>
<td>9.90</td>
</tr>
<tr>
<td>Palmitoleic acid(C16:1)</td>
<td>0.3-3.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.10</td>
</tr>
<tr>
<td>Stearic acid(C18:0)</td>
<td>0.5-5</td>
<td>4.7</td>
<td>4.0</td>
<td>4.04</td>
</tr>
<tr>
<td>Oleic acid(C18:1)</td>
<td>55-83</td>
<td>18.6</td>
<td>23.4</td>
<td>24.45</td>
</tr>
<tr>
<td>Linoleic acid(C18:2)</td>
<td>3.5-21</td>
<td>68.2</td>
<td>53.2</td>
<td>54.46</td>
</tr>
<tr>
<td>Linolenic acid(C18:3)</td>
<td>≤ 1.0</td>
<td>0.5</td>
<td>7.8</td>
<td>5.71</td>
</tr>
<tr>
<td>Arachidic acid (C20:0)</td>
<td>< 0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.33</td>
</tr>
</tbody>
</table>
RESULTS

1) Effect of different oil treatments on the estrous cycle:
In the current study, vaginal smears revealed that none of the applied oil led to changes in the cellular characteristics of the expected phases of the estrous cycle as compared with those of the control group.

2) Effect of different oil treatments on Estradiol level (E_2) and Progesterone level (P_4) during different phases of estrous cycle:
Results of the present study clarified that, throughout the experimental period, in control as well as oil administered females, the highest E_2 levels were recorded at proestrous and estrous phases (68.75 ± 6.14 pg/ml and 57.19 ± 5.17 pg/ml, respectively) while, for the highest levels for P_4 were recorded at postovulatory stages (metestrus and diestrus) of the estrous cycle (17.63 ± 1.32 ng/ml and 12.98 ± 0.63 ng/ml, respectively) (Table 2 and 3). It was also noted that the hormonal pattern didn’t differ significantly among different treatments within the same stage of the cycle, except for the group received oil mixture where E_2 and P_4 levels decreased significantly ($P \leq 0.05$) during metestrous and diestrous phases, respectively.

3) Effect of different oil treatments on recovery rate and maturation rate of oocytes:
The highest significant ($P < 0.05$) oocyte recovery rate (RR) (5.43 ± 0.23%, 4.41± 0.13%) and maturation rate (MR) (79.17 ± 2.03%, 73.43 ± 1.97%) were attained after application of EVOO followed by sunflower oil, respectively. While the lowest values were calculated with the soybean oil and oil mixture (3.83 ± 0.13 %, 2.50 ± 0.16 %) and (68.18 ± 2.29 %, 62.50 ± 2.23 %), respectively. It was also noted that there were no significant difference in RR and MR between control and sunflower oil treated groups (Table 4).

4) Histopathological findings:
Histopathological findings of the ovarian sections of the control as well as EVOO and sunflower oil treated groups disclosed normal ovarian structure with different stages of mature Graafian follicles and multilayered follicular epithelium and corpus luteum (Figs. 1, 2 and 3). On the contrary, administration of soybean oil alone resulted in severe congestion of the ovarian blood vessels in the medulla with different stages of mature Graafian follicles and corpus luteum (Figs. 4) and when mixed with sunflower oil led to severe congestion of ovarian blood vessels with few number of mature Graafian follicles and many corpora lutea (Figs 5).

Table 2: Estradiol level (pg/ml) during different phases of estrous cycle (Mean ± SE).

<table>
<thead>
<tr>
<th>Items</th>
<th>Control</th>
<th>EVOO</th>
<th>Sunflower</th>
<th>Soybean</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proestrus</td>
<td>68.75 ± 6.14 A</td>
<td>67.95 ± 4.78 A</td>
<td>66.09 ± 5.19 A</td>
<td>72.54 ± 5.13 A</td>
<td>65.33 ± 4.22 A</td>
</tr>
<tr>
<td>Estrus</td>
<td>57.19 ± 5.17 A</td>
<td>53.16 ± 3.44 A</td>
<td>55.22 ± 5.45 A</td>
<td>60.42 ± 5.14 A</td>
<td>64.52 ± 5.13 A</td>
</tr>
<tr>
<td>Metestrus</td>
<td>32.53 ± 3.39 B</td>
<td>30.15 ± 2.98 B</td>
<td>31.64 ± 4.14 B</td>
<td>35.31 ± 3.81 B</td>
<td>23.19 ± 1.56 B*</td>
</tr>
<tr>
<td>Diestrus</td>
<td>21.11 ± 4.05 C</td>
<td>22.17 ± 2.14 C</td>
<td>20.21 ± 2.42 C</td>
<td>28.14 ± 3.35 C</td>
<td>24.64 ± 2.23 B</td>
</tr>
</tbody>
</table>

-SE: Standard error.
-In the same estrous cycle, values having different letters differ significantly from each other at ($P \leq 0.05$).
-In the same stage, values with stars (*), differ significantly ($P \leq 0.05$) from the corresponding.
Table 3: Progesterone level (ng/ml) during different phases of estrous cycle (Mean ± SE).

<table>
<thead>
<tr>
<th>Items</th>
<th>Control</th>
<th>EVOO</th>
<th>Sunflower</th>
<th>Soybean</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proestrus</td>
<td>3.45 ± 0.30°A</td>
<td>4.01 ± 0.51°A</td>
<td>4.17 ± 0.18°A</td>
<td>3.36 ± 0.41°A</td>
<td>3.96 ± 0.45°A</td>
</tr>
<tr>
<td>Estrus</td>
<td>4.01 ± 0.37°A</td>
<td>5.22 ± 0.55°A</td>
<td>4.81 ± 0.43°A</td>
<td>4.56 ± 0.36°A</td>
<td>4.03 ± 0.47°A</td>
</tr>
<tr>
<td>Metestrus</td>
<td>17.63 ± 1.32°B</td>
<td>18.02 ± 1.59°B</td>
<td>16.91 ± 0.98°B</td>
<td>17.53 ± 0.98°B</td>
<td>16.07 ± 1.77°B</td>
</tr>
<tr>
<td>Diestrus</td>
<td>12.98 ± 0.63°C</td>
<td>12.09 ± 1.03°C</td>
<td>11.91 ± 1.57°C</td>
<td>10.77 ± 1.31°C</td>
<td>10.08 ± 0.95°C*</td>
</tr>
</tbody>
</table>

-SE: standard error
-In the same estrous cycle, values having different letters differ significantly from each other at (P ≤ 0.05).
-In the same stage, values with stars (*), differ significantly at (P ≤ 0.05) from the corresponding.

Table 4: Effect of oils administration on recovery rate and maturation rate of oocytes (Mean ± SE).

<table>
<thead>
<tr>
<th>Items</th>
<th>Control</th>
<th>EVOO</th>
<th>Sunflower</th>
<th>Soybean</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of ovaries</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Number of oocytes</td>
<td>96</td>
<td>108</td>
<td>88</td>
<td>76</td>
<td>56</td>
</tr>
<tr>
<td>Recovery rate</td>
<td>4.83 ± 0.18°a</td>
<td>5.43 ± 0.23°b</td>
<td>4.41 ± 0.13°a</td>
<td>3.83 ± 0.13°c</td>
<td>2.50 ± 0.16°d</td>
</tr>
<tr>
<td>Good quality oocytes</td>
<td>81</td>
<td>96</td>
<td>64</td>
<td>66</td>
<td>40</td>
</tr>
<tr>
<td>Total number of mature oocytes</td>
<td>60</td>
<td>76</td>
<td>47</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>Maturation %</td>
<td>74.07 ± 1.18°a</td>
<td>79.17 ± 2.03°b</td>
<td>73.43 ± 1.97°a</td>
<td>68.18 ± 2.29°ac</td>
<td>62.50 ± 2.23°cd</td>
</tr>
</tbody>
</table>

-SE: Standard error.
-In the same row, values having different small are significantly at P ≤ 0.05.
Fig. 1: Ovary from control group showing normal ovarian structure (H and E, microscopic magnification "mm" 400).

Fig. 2: Ovary from olive oil group revealed normal structure with different stages of ovarian follicles with multilayered follicular epithelium. Some follicles contain ova with covering epithelium projecting into the antrum. Corpora lutea are seen in the ovarian cortex (H and E, microscopic magnification "mm" 200).

Fig. 3: Ovary from sunflower oil group revealing normal ovarian structure with different stages of mature Graafian follicles and multilayered follicular epithelium and corpus luteum (H and E, mm 200).

Fig. 4: Ovary from soybean oil group demonstrating congestion of the ovarian blood vessels in the medulla with different stages of mature Graafian follicles and corpus luteum. (H and E, mm 200).

Fig. 5: Ovary from group received oil mixture showing severe congestion of ovarian blood vessels with few number of mature Graafian follicles and many corpora lutea (H and E, mm 100).
DISCUSSION

1- Effect of different oils on estrous cycle and ovarian structures: The obtained results disclosed that none of the applied oils led to alteration in cellular characteristics of the expected phases of the estrous cycle. A finding receives evidence from the histopathological examination that revealed normal ovarian structures; GF and CL, keeping into consideration the degree of congestion on using soybean and oil mixture (Figs. 1, 2, 3, 4 and 5). This comes in agreement with Hanis et al. (1989) and Sortur and Kaliwal, (1997) who demonstrated that female rats administered olive oil or sunflower oil show regular estrous cycle with normal cellular characteristics of the estrous cycle phases. In this context, EVOO and sunflower oil were reported to have anti-inflammatory properties which prevent inflammation of blood vessels (Pal, 2011 and Schwingshackl et al., 2015). On the other hand, soybean oil either alone or in the mixture, induced congestion of some ovarian blood vessels in the medulla which did not prohibit the functional ovarian performance represented by the appearance of different stages of mature Graafian follicles and the corpus luteum (Figs. 4 and 5). In this respect, several studies reported that addition of soybean oil in the diet can increase the pro-inflammatory factors such as isoflavones and cause inflammation of blood vessels (Chen et al., 2007; Delclos et al., 2009 and Pei et al., 2018). Moreover, Serag El Din et al. (2011) and Sohrabi et al. (2015) found that female rats feed high fat diet containing soybean seed or soybean oil have a decreased number of primordial, Graafian follicles, corpora lutea and Cumulus expansion.

2- Effect of different oils on ovarian steroid hormones:

a- Estradiol: The results of the present study clarified that, throughout the experimental period, in control as well as oil administered females, the highest E2 level was recorded at proestrous and estrous phases while it reached minimum during postovulatory stages; metestrus and diestrus. A finding which confirms the regularity of the estrous cycle and normal histopathology recorded in the present study. These results are in agreement with study recorded that plasma E2 level peaked during the early proestrous stage and decreased after ovulation to reach the baseline at metestrus (Sportnitz et al., 1999). It was also noted that the hormonal pattern of E2 level didn’t differ significantly among different treatments within the same stage of the cycle, except for the group received oil mixture where E2 level decreased significantly (P < 0.05) during metestrus phase (Table 2). These findings are in line with Sorbera et al. (2001) and Salem (2015) who recorded that olive oil alone or in combination with sunflower oil possesses estrogenic activity that attributed to their content of polyunsaturated fatty acids (omega-3 and omega-6 PUFAs) and monounsaturated fatty acids (such as oleic acid). It was also added that these contents have strong capability of enhancing hormonal functions by stimulating hypothalamus-pituitary ovarian axis and they considered the precursor of cholesterol for formation of steroid nucleus of steroid hormones. The significant (P ≤ 0.05) reduction in serum E2 level during metestrus in soybean oil treated group, comes in agreement with study of Tamaya (2005) recorded that phytoestrogens (isoflavones) contained plants such as soybean decrease level of E2 through stimulation of sex hormone binding globulin (SHBG) which will bind with free E2, or down regulation enzymes that involved in E2 synthesis such as aromatase enzyme. Also, adipokines is released during various inflammatory processes, which is an inflammatory mediator and negatively correlated with E2 plasma levels (Combs et al., 2004 and Rose et al., 2005). Furthermore, Jaarin and Kamisah (2018) recorded that soy oil causes vascular inflammation and this may be attributed to its content of isoflavones. These findings which explain the severe congestion in the ovarian blood vessels that accompanies with decreased of E2 level (Fig. 4 and 5).

b- Progesterone: The results clarified that, throughout the experimental period, in control as well as oil administered females, the highest P4 level was recorded at postovulatory stages while it reached minimum during proestrous and estrous phases (Table 3). A finding which confirms the
regularity of the estrous cycle recorded in the present study. These results are in agreement with Drury and Gold (1978) and Sportnitz et al. (1999) who stated that in intact female rats, plasma P4 level peaked during the metestrus and reached the lowest during the proestrous stage. In this concern, it was previously documented that ovulation time of the Graafian follicles in female rat is a continual mechanism that extends from the beginning of late proestrus to the end of estrus concomitant with LH surge (Schwartz, 1964 and Takeo, 1984). It was also noted that the hormonal pattern of P4 level didn’t differ significantly among different treatments within the same stage of the cycle, except for the group received oil mixture where P4 level decreased significantly (P ≤ 0.05) during diestrus phase (Table 3). Similarly, Phillip et al. (2014) and Vishnu et al. (2017) found that dietary supplementation of soybean oil or their PUFA in the diet did not affect the overall serum P4 concentrations in treatment and control groups and this may be attributed to several potential explanations for the outcomes of this study, including; insufficient amount of PUFA to decrease the hepatic clearance of P4, length of supplementation period and/or frequency of blood sampling. However oils administration in the diet led to increase cholesterol level that increases the steroidogenic hormones (E2 and P4) but it was found that an increased plasma cholesterol concentration is not thought to be rate-limiting to ovarian steroidogenesis (Carroll et al., 1992). Concerning, reduction of serum P4 level during diestrus in oil mixture group, this effect can be attributed to high concentration of omega-3 and omega-6 in the oil mixture than other oils as stated by (Milvae et al., 1996 and Robinson et al., 2002) who mentioned that diet containing omega-3 and omega-6 especially LA may alter synthesis of luteotrophic prostaglandins (PGE2) in the early luteal phase and consequently decrease P4 level. This in agreement with Cassidy et al. (4991) and Lu et al. (1996) who reported that daily consumption of a diet containing soybean for one month suppressed both LH and FSH which in turn delays in progesterone level.

3- Effect of different oils on IVM: The highest significant (P ≤ 0.05) oocyte recovery rate (RR) (5.43 ± 0.23%, 4.41± 0.13%) and maturation rate (MR) (79.17 ± 2.03%, 73.43 ± 1.97%) were attained after application of EVOO followed by sunflower oil, respectively. While the lowest values were calculated with the soybean oil and oil mixture (3.83 ± 0.13 %, 2.50 ± 0.16 %) and (68.18 ± 2.29 %, 62.50 ± 2.23 %), respectively. It was also noted that there were no significant difference in RR and MR between control and sunflower oil treated groups (Table.4). These results clarify that EVOO is the oil of choice to improve the capability of ovary to produce high number of good quality oocytes suitable for being fertilized and enhance the ability of oocyte maturation in vitro. In this respect, it was found that EVOO contain natural antioxidant such as polyphenol, vitamin E and flavonoids that minimize oxidative stress caused by ROS and this help in improving oocyte recovery rate and their quality (Aparicio and Aparicio-Ruíz, 2000 and Agarwal, et al., 2014). These results come in accordance with those in cattle (Bilby et al., 2006). The authors found that more oocytes were collected from dairy cows fed OlAc (which is found with high concentration in EVOO) as compared with cows fed linoleic acid or linolenic acid. In this respect, it was found that OlAc increases the ratio of PGE2 to PGF2α produced by endometrial cells that contributes to ovarian folliculogenesis or granulosa cell differentiation (Cheng et al., 2015). Similarly, Shaaker et al. (2012) found that there are associations between OlAc and the number of retrieved mature oocytes, showed a positive trend. Warzych et al. (2013) and Fayezi et al. (2017) hypothesized that OlAc in the follicle microenvironment can contribute to the regulation of metabolite transport through the control of gap junctional communication between cumulus cells and the developing oocyte and this was related to a higher oocyte quality, in terms of COC morphology and follicular diameter. Aardema et al. (2011) found that oleic acid improves oocyte maturation rate and mitigates the unfavorable effects of saturated fatty acids on ovine oocyte development. Furthermore, Ziecik et al. (2008)
and Cheng et al. (2015) reported that Oleic acid significantly increased the ratio of PGE2 to PGF2α which may contribute in granulosa cell differentiation and oocyte maturation in porcine and ewes, respectively. Regarding sunflower oil, the present study clarifies that sunflower oil supplementation maintain normal function of the ovary, oocyte recovery rate and maturation rate. In this respect, Balevi et al. (2003) and Midilli et al. (2009) recorded that sunflower oil added in diet improved reproductive performance, increased fertility and hatchability of quail; an Mabrouk et al. (2019) effect attributed to high linoleic and linolenic acids content. In ewes, Khotijah et al. (2015) and Kia and Safdar (2015) have shown that incorporating sunflower oil in the diet during flushing period leads to improved reproductive performance by affecting fertility as well as ovulation and lambing rates and this is attributed to its content of omega-6 (linoleic acid) and omega-3 (linolenic acid) unsaturated fats. These acids are the precursor of luteolytic PGF2α which helps in ovulation process as stated by Silvestre et al. (2011). Moreover, Ying et al. (2011) and Senosy et al. (2013) found that sunflower oil consumption increases blood glucose concentration which led to increase in size of large follicles that causes ovulation. Omega-6 sources in sunflower oil have a main role in synthesis and secretion of prostaglandin E2 (PGE2) which considered as a critical mediator of oocyte maturation (Bilby et al., 2006; Silvestre et al., 2011 and Safdar et al. 2017). Also, Idson B, (1993) documented that sunflower oil contains vitamin E, which is a powerful anti-oxidant and scavenger that stops free radical-triggered chain reactions and this finding illustrate the beneficial effect on oocyte recovery and maturation rate. Concerning, administration of soybean oil and oil mixture the current study appears that they reduce recovery rate, oocytes quality and maturation rate. Similarly, Serag El Din et al. (2011) found that consuming soybean products causes bad effects on animal reproduction including reduction of number of ovarian follicles and this may be attributed to their content of soybean and isoflavones. Soybean oil has been reported to contain high levels of linolenic acid (omega-3) (ALA) which alters oocyte recovery rate, decreases the number of obtained oocytes and decrease the maturation rate through decrease in the number of oocytes reaching MII with a reduction in cumulus expansion (Marei et al., 2010 and Wakefield et al., 2008). Moreover, mice fed a high omega-3 diet for 4 weeks had increased n-3 fatty acid content in the ovary and this was associated with altered oocyte mitochondrial distribution, increased ROS levels, poorer embryo morphology and development into blastocyst following fertilization (Wakefield et al. 2008). It could be concluded that, the current study may add a new dimension of interest to the beneficial health effect of EVOO and sunflower oil with special reference to EVOO in respect to ovarian integrity.

REFERENCES

